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EVALUATION OF PILOT'S ABILITY TO STABILIZE A FLEXIBLE 

LAUNCH VEHICLE DURING FIRST-STAGE BOOST 

By Gordon H. Eardy and James V. West 
Ames Research Center 

and 

Robert W. Gunderson 
Marshall Space Flight Center 

SUMMARY 

The f e a s i b i l i t y  of manned par t ic ipat ion i n  the  control of the atmospheric 
f l i g h t  of a l a rge  launch vehicle was investigated. Studies included simula- 
t i on  of r ig id ,  e l a s t i c ,  and fuel-sloshing dynamics of the Saturn V lunar 
mission vehicle.  Fixed cockpit and centrifuge results indicate that p i l o t s  
could s a t i s f a c t o r i l y  s t ab i l i ze  the vehicle and reduce structural. loads.  
were a l so  able t o  handle wide var ia t ions i n  vehicle parameters and t o  handl 
cer ta in  failure s i tua t ions .  

They 

INTRODUCTION 

There has been considerable speculation t h a t  p i l o t  par t ic ipa t ion  i n  the 
guidance and control of the  Saturn V launch vehicle could increase the  proba- 
b i l i t y  of over-all mission success. 
launch vehicles has already been completed, mst notably f o r  the Titan I11 
( re f s .  1-31, and the somewhat e a r l i e r  investigation by Holleman and Armstrong 
( r e f .  4). These investigations have shown that the  problem of controll ing 
launch vehicles manually may be broken in to  two separate phases. 
the atmospheric f l i g h t  phase f o r  which the guidance system requirements are 
r e l a t ive ly  insignif icant .  
t i o n  and aerodynamic load reduction of a large,  f lex ib le ,  and usually aerody- 
namically unstable vehicle.  
disturbances and i n  some instances by propellant-sloshing dynamics. 
the  second phase of f l i g h t ,  outside the sensible atmosphere, the problem areas 
reverse. 
of f l i g h t )  and there  a re  no atmospheric disturbances, the  a t t i t u d e  s tab i l iza-  
t i o n  t a sk  is relieved. Dur ing  t h i s  second phase of f l i g h t ,  though, t he  
vehicle m u s t  be guided precisely in to  some type of o rb i t .  
requirement makes guidance the primary problemduring t h e  second o r  guidance 
phase of f l i g h t .  The previous investigations mentioned have demonstrated the  
f e a s i b i l i t y  of manually controll ing both phases of f l i g h t  f o r  par t icu lar  
vehicles and par t icu lar  mission prof i les .  

Some study of p i lo ted  control of large 

The first is 

The primary problems here are a t t i t u d e  s tab i l iza-  

These problems are fur ther  complicated by wind 
During 

Since the  vehicle is  usually much s t i f f e r  (second and t h i r d  stages 

The o r b i t  injection 

While much can be learned f romthese  studies, the  la rge  differences of 
the  Saturn V vehicle and mission objectives make it d i f f i c u l t  t o  extrapolate 



the  resu l t s .  
Research Center ( A R C )  a re  current ly  engaged i n  a jo in t  f e a s i b i l i t y  study t o  
determine t h e  poss ib i l i ty  of manually controll ing the Saturn V launch vehicle 
during both phases o f  f l i g h t ,  from l i f t -o f f  through lunar  o rb i t  inject ion.  
Earth-orbital phases are not being considered. 

Consequently the Marshall Space Flight Center (MSFC) and Ames 

The purpose of t h i s  report  i s  t o  present the r e su l t s  obtained fo r  the  
atmospheric f l i g h t  phase. The high fineness r a t i o ,  area dis t r ibut ion,  and 
large mass t o  area r a t i o  of the Saturn V configuration distinguish it from 
previously investigated vehicles.  
the  unwinged payload (Apollo capsule), the  l eve l  of aerodynamic i n s t a b i l i t y  
i s  re la t ive ly  low. 
motions of t he  vehicle.  Since the  frequencies of these e l a s t i c  motions are 
re la t ive ly  low (nearing p i l o t  control frequencies), it w a s  f e l t  they could 
present several  problems. 
s t a b i l i t y  augmentation system and the  motion cues f e l t  by the p i l o t  (located 
near the forward end). Previous s tudies  had investigated the  e f f ec t s  of 
th rus t  and r i g i d  body accelerations on the  p i l o t ' s  control capabi l i t ies ;  t he  
present study included an investigation of the  e l a s t i c  motion accelerations.  

Because of the large mass t o  area r a t i o  and 

The high fineness r a t i o  manifests i t s e l f  i n  la rge  e l a s t i c  

Among these a re  the  requirements placed on the 

The simulation used both a fixed-base cockpit and the Ames five-degrees- 
of-freedom centrifuge. The mathematical simulation w a s  carried out on an 
electronic analog computer and included f ive  r i g i d  body degrees of motion, two 
modes of e l a s t i c  body motions, and fuel-sloshing dynamics. Guidance consisted 
of a pitch a t t i t ude  open-loop time program. In addition t o  s tab i l iz ing  a t t i -  
tude and reducing s t ruc tu ra l  loads due t o  the wind, the  p i l o t  w a s  required t o  
roll the vehicle t o  the proper downrange heading immediately after take-off. 

NOT AT1 ON 

gain coeff ic ient  i n  r a t e  loop, sec 

center of gravi ty  

time varying coeff ic ients  

sea-level value of ear th '  s acceleration, m/sec2 

gain coeff ic ient  i n  accelerometer loop, deg/m/sec2 

vehicle moment of i ne r t i a ,  kg-m-sec2 

distance from vehicle c.g. t o  accelerometer measured 

mass of the  vehicle,  kg-secZ/m 

mass of t he  i t h  fuel-sloshing mass, kg-sec2/m 

posit ive forward, meters 
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q j i  

s j i  

n'pi * 
X i  

r i g i d  body bending moment at  specified s t a t ion  divided by design value 

dynamic presssure, ~ / m 2  

Laplace operator, l / sec  

nominal vehicle velocity,  m/sec 

vehicle c.g. locat ion with respect t o  nominal location, meters 

distance t o  the  i t h  fuel-sloshing mass measured posi t ive af t ,  rceters 

aerodynamic angle of a t tack,  deg 

component of angle of a t tack  due t o  wind, deg 

engine gimbal angle, deg 

accelerometer output, m/sec2 

r i g i d  body component of accelerometer output, m/sec2 

damping r a t i o  

damping r a t i o  of i t h  bending mode 

damping r a t i o  of i t h  f u e l  tank 

i t h  generalized e l a s t i c  bending mode amplitude i n  j direct ion 

amplitude of motion of i t h  fuel-tank sloshing mass i n  j direction, 
meters 

t o t a l  a t t i t u d e  angle with respect t o  a space fixed coordinate s y s t e m ,  
deg 

a t t i t u d e  e r ro r  sensed by the inertial .  navigator, deg 

r i g i d  body attitude er ror ,  deg 

nominal vehicle a t t i t u d e  with respect t o  a space fixed coordinate 
system, deg 

na tura l  frequency, l / sec  

na tura l  frequency of i t h  bending mode 

na tura l  frequency of i t h  f u e l  tank 
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Sub s c r i p  t s 

command 

pitch 

Yaw 

roll 

component along x 1  ax is  

component along xp ax is  

component a long  ax is  

DESCRIPTION OF SIMULATION 

Vehicle Description 

The example vehicle used in  t h i s  study w a s  the Saturn V launch vehicle 
as defined f o r  the Apollo lunar landing mission. A s  shown i n  f igure 1, the  
vehicle configuration consists of three booster stages and the  Apollo space- 
c r a f t .  
396 inches (not including f i n s ) .  
mately 6,000,000 pounds. 
stages. The S-IC, or first stage, is  powered by f ive  F-1 engines with a t o t a l  
thrust  of 7,3OO,OOO pounds. 

Over-all vehicle length i s  360 feet  and the maximum diameter i s  
N l y  fueled, the  vehicle weighs approxi- 

The launch vehicle consists of three l i qu id  fueled 

The Saturn V launch vehicle has an i n e r t i a l  navigation and guidance 
system independent of the one contained i n  the  Apollo spacecraft. A control 
system computer and necessary sensors a re  a l s o  located i n  the  launch vehicle.  

Trajectory Description 

The present report  i s  concerned with the t ra jec tory  from launch through 
f irst  stage burnout. This stage follows a gravi ty  turn  t ra jec tory  f o r  
130 seconds and separates a t  approximately 60,000 meters altitude with a 
velocity of 2,330 meters per second. 
4.7 and the maximum dynamic pressure of 3,650 kg/m2 occurs at an a l t i t ude  of  
13,000 meters. 

The maximum thrust-to-weight r a t i o  i s  

Wind kvironment 

The primary t ra jec tory  disturbance during the  first stage of f l i g h t  i s  
the  wind environment. 
s t a t i s t i c a l  analysis of wind measurements taken a t  the  A i r  Force Eastern Test 

The wind environment used i n  t h i s  study is  based on 
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Range  (formerly Atlantic Missile Range) , Cape Kennedy Launch Area. 
steady-state wind, wind shear, gusts, and turbulence are considered. 
steady-state w i n d s  were assumed horizontal w i t h  no r e s t r i c t ion  on direction. 

Values of 
The 

Figure 2 presents the w i n d  used fo r  t h i s  report .  The maximum wind speed 
is  75 meters per second in the sensible atmosphere (below 3O,OOO meters), 
while the maximum value of wind shear occurs ne- the point of maximum 
dynamic pressure. 
amplitude, high frequency gusts and turbulence have l i t t l e  e f fec t  on r i g i d  
body vehicle loading and control. lh addition, reference 5 shows that f o r  
this  c lass  vehicle the e f fec ts  of gusts and turbulence on e l a s t i c  body dynam- 
i c s  are small. Consequently, they were not included in the present study. 
Quartering headwinds and tailwinds were found more d i f f i c u l t  t o  control than 
winds all i n  one axis. 
t o  a c t  45O, 135', 2 2 5 O ,  and 315' re la t ive  to  vehicle heading. 
were chosen i n  a random sequence from run to run t o  help eliminate p i l o t  
learning of a par t icular  wind. 

Because of the large mass t o  area r a t i o  of Saturn V, low 

Consequently, the wind prof i le  of f igure 2 was assumed 
The directions 

Guidance and Control Constraints 

The principal constraints placed on the launch guidance and control 
system are guidance accuracy and s t ruc tura l  loads. 
present report  considers only the f i rs t  stage of f l i gh t ,  s t ruc tura l  loads were 
the primary constraint. 

Since the study of the 

The performance measures used in t h i s  study t o  show how w e l l  the system 
has sa t i s f i ed  the design constraints are  described i n  the following 
paragraphs. 

The primary performance measure used was the body bending moment 
occurring a t  a c r i t i c a l  location on the vehicle. 
calculated with the expression 

This bending moment was 

where 

Es, body bending moment a t  s ta t ion  x 

- ayr 

- aMX 

function of mass dist r ibut ion and aerodynamic loading, constant at  a 
a, given time of f l i g h t  a t  s ta t ion  x 

function of mass dist r ibut ion and thrust ,  constant f o r  a given time of 
a P  f l i g h t  a t  s ta t ion  x 

aMX - sens i t i v i ty  of Mx t o  the i t h  generalized e l a s t i c  mode acceleration, 
a;ii constant a t  a given t i m e  of f l i g h t  a t  s ta t ion  x 
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and a,p,ti a re  the  angle of a t tack,  engine angle, and i t h  generalized 
e l a s t i c  mode acceleration, respectively.  
bending moments, normalized t o  uni ty  a t  the  l i m i t  design moment, w a s  used fo r  
data presentation. 
the  body bending moment, but t h a t  data re la t ing  sloshing mass accelerations 
t o  body bending moment were not available a t  the  time of the study. 
nary data indicate  the contribution w i l l  be small (less than 10 percent of 
the  design value).  
sented for reference. 

The resu l tan t  of the  p i tch  and yaw 

It should be noted t h a t  fue l  sloshing w i l l  contribute t o  

Prelimi- 

Sloshing mass accelerations,  where calculated, are pre- 

The e l a s t i c  mode accelerations contribute t o  the motion cues f e l t  by the 
Since these may be objectionable, a design goal w a s  t o  minimize them. p i l o t .  

Data are presented i n  terms of the  e l a s t i c  body accelerations f e l t  by the 
p i l o t .  

A measure of how w e l l  the  p i l o t  could control t o  the nominal t ra jec tory  
w a s  obtained by measuring the distance and veloci ty  dispersions normal t o  the  
nominal t ra jec tory  a t  the  f i r s t - s tage  cutoff point.  A s  mentioned previously, 
however, t ra jec tory  control during the  first stage of the boost prof i le  is  
considered a l e s s  s t r ingent  constraint  than s t ruc tu ra l  loading. 

The f i n a l  performance measure used w a s  the  numerical Cooper P i lo t  Opinion 
Rating System shown i n  f igure 3. This ra t ing  i s  the  p i l o t ' s  subjective 
opinion of how w e l l  he w a s  able t o  control the system with respect t o  the task 
assigned. Reference 6 describes the Cooper Rating System i n  d e t a i l .  

Control System Description 

Attitude of  the Saturn V during the  powered f l i g h t  of the f i rs t  stage is 
controlled by swiveling the four outboard F-1 engines. The center engine 
does not  swivel. The outboard engines are each swiveled i n  the p i tch  and y a w  
planes by pi tch and yaw hydraulic actuators .  
of pitch and y a w  actuators is  used. 

For roll control a combination 

The roll control system used during the study was a simple rate augmenta- 
t i on  system while f igure 4 shows the configuration of the  p i tch  and yaw 
nominal manual control system studied. It w i l l  be noted t h a t  t he  p i tch  and 
yaw augmentation system consists of  a single ( r a t e )  loop. 
were located a t  s ta t ion  2470 on the vehicle f o r  t h i s  study. 
a t t i tude  error, a t t i t ude  rate, and accelerometer s ignals  from body-mounted 
normal accelerometers mounted i n  the second stage a re  displayed t o  the  p i l o t .  
The ine r t i a l  platform for  sensing a t t i t ude  w a s  located a t  s t a t ion  3260 i n  
figure 1. 

The rate  gyros 
Atti tude,  

The basic configuration, or loop s t ructure ,  w a s  determined by r i g i d  body 
studies. 
f i l t e r s  ( r a t e  augmentation f i l t e r  and control ler  output f i l t e r )  t o  maintain 
system s t a b i l i t y .  

Introducing e l a s t i c  body dynamics dictated the  addition of two 

The r i g i d  body vehicle is inherently unstable because of the  a f t  location 
of the c.g. with respect t o  the  center of pressure. This i n s t a b i l i t y  varies 
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. 
with time of f l i g h t  and reaches a peak (%' of the short  period mode equal 
t o  about -0.15) near the time of f l i g h t  corresponding t o  maximum dynamic 
pressure. The lowest f l ex ib l e  body mode frequency is  ju s t  over 1 cycle per 
second. 

The engine dynamics were approximated by the following t ransfer  function 

P(s) = 27,000 
p c ( s )  ( s  + 30)(s2 + 18s + 900) 

which neglects engine ine r t i a .  In addition, the angular def lect ion and r a t e  
of the  engine w e r e  l imited.  
course of the study while the rate l i m i t  was exceeded only in  extreme cases. 

The deflection limit was not exceeded during the  

Instrument panel d e t a i l s  are  shown in figure 5 .  The two la rge  
instruments a re  standard a i r c r a f t  a l l -a t t i tude  indicators,  with the upper one 
being used a s  the primary f l i g h t  instrument except during high dynamic 
pressure f l i g h t .  The upper indicator i s  rotated clockwise 900 f romthe  stand- 
ard a i r c r a f t  or ientat ion t o  simulate the gimbal order t h a t  would be used fo r  
the  spacecraft .  Vehicle a t t i t ude  is  displayed on the sphere of t h i s  indica- 
t o r  with p i tch  and yaw a t t i t u d e  e r rors  being presented on the f l i g h t  d i rec tor  
needles. Scaling on the needles was 100 a t t i tude  e r ro r  per inch. During the  
high dynamic pressure region of f l i g h t  the  lower a l l - a t t i t ude  indicator was 
the primary instrument. 
indicator while the p i tch  and yaw body-mounted normal accelerometer outputs 
are displayed on the f l i g h t  d i rec tor  needles and are  scaled 1/8 g per inch. 
Vehicle attitude ra t e s  (driven by spacecraft sensors) a r e  presented on the  
three d.c. meters a t  the  upper r igh t  of the  display panel. 
def lect ion corresponded t o  a 40 per second vehicle a t t i t u d e  rate. 
ment t o  the  l e f t  of the upper a l l - a t t i t ude  indicator was used as a clock. 

Atti tude error is  presented on the sphere of t h i s  

A 4 3 O  meter 
The instru- 

A two-axis side-arm "pencil" control ler  and rudder pedals were used ear ly  
in  the study but the three-axis side-arm controller shown i n  f igure 6 was used 
f o r  the majority of the study. 
fo r  t h i s  control ler  a r e  shown i n  f igure 7. Performance comparisons showed 
l i t t l e  difference in changing the  control ler .  

St ick force and displacement charac te r i s t ics  

Fixed Cockpit and Centrifuge 

The fixed-cockpit simulator used is  shown in f igure 8. Figure 9 shows 
the  Ames five-degrees-of-freedom centrifuge which has a maximum capabi l i ty  
of 6 g.  Vibration l eve l s  and response of the centrifuge are discussed i n  the 
R e s u l t s  and Discussion section of the report .  

7 



Simulation Equations 

The r i g i d  body equations of motion simulated were a perturbation set with 
respect t o  a reference frame moving along the  nominal t ra jec tory .  

Nominal velocity 

Vehicle center line Nk Ad \ .  

.'-Launch point 

Axes x1,x2,x3 form a right-hand orthogonal system with x2 al ined along 
the  nominal veloci ty  vector,and axes 
The dynamics of  the f irst  stage propellants (two tanks) and up t o  two struc- 
tural  e l a s t i c  modes were included. The l inear ized,  time varying coeff ic ient  
equations of motion a re  given below: 

x1,x2 lying i n  the nominal boost plane. 

Rigid body (including the i t h  tank): 

8 
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Elast ic  body ( i t h  mode): 

Pilot display and control system parameters: 



A%* 

n 

‘4r = 

% = n c p R + X R  

‘ F P = + + x p  

The symnetry of the configuration permitted i n e r t i a  product and 
aerodynamic coupling t o  be neglected. Nonlinear terms i n  the  equations of 
motion were found t o  have negligible e f f ec t  for  the ranges of perturbations 
considered. 

Time varying coeff ic ient  data  f o r  representative times of f l i g h t  are 
given i n  tab le  I and bending mode shapes are presented in f igure 10. 

While many simplifying assumptions were intent ional ly  made i n  the  deriva- 
t i o n  of these equations, one inadvertent omission occurred i n  the equations 
for  the r i g i d  body content of t he  accelerometer signals,  equations (10) and 
(11). The forces acting between the  vehicle and the  sloshing masses a f f ec t  

10 



t h e  accelerometer s ignal  d i r e c t l y  as  a t rans la t iona l  acceleration 
omitted) and ind i rec t ly  through the  vehicles angular acceleration t included 
as (Za/57.3)d+ term). 
study, these two contributions are cancelling in sign. Since the  sloshing 
content of the  accelerometer i s  noise t o  the p i l o t  i n  t h a t  it obscures the 
r i g i d  body s ignal ,  it is  believed t h a t  the  omission of the d i r ec t  contribution 
(making the  ac tua l ly  displayed s ignal  larger  than it should have been) made 
the  results s l i g h t l y  conservative. 

tern were 

With the  accelerometer and tank locations used f o r  the  

The study approach used for investigating the  f i r s t - s tage  manual control 
system consisted of the following phases: 

a. Basic handling qua l i t i e s  

b. Bending f i l t e r  select ion 

c . N o r m a l  mode performance 

d. Einergency mode performance 

e. System parameter var ia t ions 

Four Ames research p i l o t s  were used f o r t h e  majority of the  simulated 
f l i gh t s .  V i s i t i n g  p i l o t s  from Edwards A i r  Force Base and the  Manned Space- 
c r a f t  Center a l so  were used. A l l  simulated f l i g h t s  were conducted as follows: 
Each p i l o t  f l e w  pract ice  t r a j ec to r i e s  at a given set of conditions u n t i l  he 
f e l t  t h a t  he had reached a sa t i s fac tory  l eve l  of fami l ia r i ty .  He then made 
three simulated f l i g h t s  during which data were collected a t  the  same s e t  of 
conditions. 
t i o n  ( f i g .  3 ) .  

A t  the  conclusion of the three data runs he rated the  configura- 

RESULTS AND DISCUSSION 

Basic Handling Qualities 

The objective of t h i s  portion of the  study was t o  determine the basic  
control system charac te r i s t ics  fo r  a vehicle of t h i s  c l a s s .  
s t a b i l i t y  augmentation, r i g i d  body gain coefficients,  and parameters f o r  
p i l o t  display were investigated.  

The required 

A five-degrees-of-freedom r ig id  body (no f u e l  sloshing) three-axis , 
discre te  time of f l i g h t  simulation was used. 
chosen was t h a t  corresponding t o  maximum dynamic pressure. Since the  maximum 
steady-state wind and maximum wind shear both occur near t h i s  t i m e  of f l i g h t ,  
it was f e l t ,  and l a t e r  jus t i f ied ,  t h a t  t h i s  would be the c r i t i c a l  design 
point of t he  t ra jec tory .  The wind disturbance used was similar t o  that shown 

11 
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i n  figure 2, but w a s  idealized t o  a ramp input building from 0 t o  73 meters 
per second a t  a r a t e  of 10 meters per second per second. The d i rec t ion  of 
t h i s  wind was randomly rotated between each pi loted run. The pi loted runs 
were approximately 30 seconds t o  1 minute i n  duration, with the  ramp wind dis-  
turbance commencing some random t i m e  a f t e r  the  run was i n i t i a t e d .  

The p i l o t  t ask  was  t o  minimize the  rigid-body bending moment, while 
s tabi l iz ing the  roll a t t i tude ,  i n  the  presence of the wind disturbance. 
discussed in the design constraints  section, aerodynamic angle of a t tack  and 
engine gimbal angle both contribute t o  the  rigid-body bending moment. The 
p i l o t  therefore attempted t o  zero the  angle of a t tack  (turning the  vehicle 
i n to  the r e l a t ive  wind) by u t i l i z ing  the  body-mounted accelerometer s ignals  
displayed on the f l i g h t  d i rec tor  needles, while minimizing engine gimbal 
angles by making the minimum required control ler  inputs. Experience indicated 
the  proper magnitude of control ler  input necessary. 
c u l t  than a t t i t ude  s t ab i l i za t ion  alone, as it requires maneuvering the vehicle 
through several  degrees of  a t t i t ude  change. 

As 

This task is  more d i f f i -  

If fue l  sloshing and engine dynamics a re  neglected and r a t e  augmentation 
assumed, the rigid-body equations f o r  the  y a w  channel become: 

57.3 1; a = A'p" + % - - V 

where the  yaw subscript has been dropped. 
of t h i s  system of equations a re  assumed t o  be constant a t  some time of f l igh t ,  
the  character is t ic  equation of  the system is: 

If the  time varying coeff ic ients  

Handling qua l i t i es  were evaluated i n  terms of the damping (25%) and s t a t i c  
s t a b i l i t y  (.n2) of  the  second order fac tor  of t h i s  equation, where 
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The aerodynamic s t a t i c  s t a b i l i t y  term, &, is  the predominant term in %2 
and is normally of sIllall magnitude for the Saturn V, approaching a maximum 
value of -0.142 a t  maximum dynamic pressure. 
ity, previous research indicated (see ref. 7) t h a t  it could be s a t i s f a c t o r i l y  
controlled with r a t e  augmentation only. 

With t h i s  low value of ins tab i l -  

For this case, as seen i n  f igure 4, there are only two gains per channel 

These are  the  rate loop gain coeff ic ient  and 
t o  choose i n  the control system design i f  the p i l o t ' s  display and control ler  
a r e  assumed t o  be sa t i s fac tory .  
the  p i l o t ' s  control ler  s ens i t i v i ty .  Figures 11 and I2 present p i l o t  ra t ing  
and maximum rigid-body bending moment, respectively, as a function of these 
two parameters. The abscissas represent control ler  s e n s i t i v i t y  presented as 
t h e  maxjmum angular acceleration obtainable w i t h  full control ler  deflection. 
The ordinate represents system damping, 25yl, seen i n  the  equation above t o  
vary l i n e a r l y  with r a t e  gain, ax. 
ously i n  the p i tch  and yaw channel. The rate  loop gain coeff ic ient  i n  the 
roll channel was s e t  t o  correspond t o  a time constant of about one second, 
while t h e  r o l l  channel control ler  s ens i t i v i ty  was f ixed a t  about 13°/sec2 
maxirmrm r o l l  control power. 

The parameter values were varied simultane- 

The s igni f icant  result shown is the  insens i t iv i ty  of bending moment 
performance t o  the two parameters. 
s e n s i t i v i t y  chosen are indicated. For neutral  s t a b i l i t y  t h i s  value of wing 
gives a time constant s l i g h t l y  over 1 second. 
rigid-body bending mment on engine gimbal angle, the  bes t  bending moment 
performance occurred a t  control ler  s ens i t i v i t i e s  s l i g h t l y  lower than t h a t  bes t  
f o r  p i l o t  ra t ing .  A t  s t i l l  lower controller s e n s i t i v i t i e s  the vehicle becoms 
uncontrollable because of the  p i l o t ' s  i nab i l i t y  t o  comand suf f ic ien t  engine 
angle t o  overcome the wind disturbance uprighting torque. A t  higher values 
the control ler  is  overly sensi t ive.  Although the f igures  indicate that 
control is possible w i t h  no rate augmentation, it must be recal led t h a t  the  
simulation was highly idealized. 

Nominal values of damping and control ler  

Because of the  dependence of 

For the  data in f igures  ll and 12 the  body-mounted accelerometers were 
mounted a t  the vehicle 's  "instantaneous" center of ro ta t ion .  This was defined 
as that locat ion on the  longitudinal axis about which the vehicle ro t a t e s  when 
an engine is  deflected and no aerodynamic force is  present. A t  th i s  locat ion 
(about 15 meters forward of the vehicle 's  center of gravi ty  a t  maximun dynamic 
pressure) the  accelerometer s ignal  due t o  vehicle ro ta t iona l  acceleration 
resu l t ing  from an engine def lect ion is exactly cancelled by the acceleromter  
s igna l  due t o  vehicle t r ans l a t iona l  acceleration. 
is present then, the only accelerometer s i g n a l  present w i l l  be t h a t  due t o  
the  aerodynamic force.  
and (ll), neglecting sloshing, t o  give the  accelerometer s ignal  in terms of 
angle of a t tack  and engine gimbal angle. 

When an aerodynamic force 

This may be seen by conibining rigid-body equations ( 5 )  
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For the  instantaneous center of ro ta t ion  (no 
e t e r  location, Za, is:  

P contribution) the  accelerom- 

The accelerometer s ignal  i s  then proportional t o  a .  Figure 1 3  shows the  
e f fec t  on p i l o t  opinion and bending moment of moving the  accelerometer from 
t h i s  location. 
ometer forward of the  c.g., normalized t o  the distance t o  the  instantaneous 
center of ro ta t ion .  In  the  equation f o r  y* above, changing 2, from the 
value f o r  the instantaneous center of rotat ion w i l l  cause the  coeff ic ient  of 
the 0 t e r n  t o  be e i the r  posit ive o r  negative. When the accelerometer i s  
moved aft of t he  center of rotat ion,  vehicle t rans la t iona l  acceleration pre- 
dominates, causing a very confusing s ignal  fo r  a t t i t ude  control.  Consequently; 
the performance as shown i n  f igure 1 3  deter iorated rapidly.  Moving the  accel- 
erometer forward causes the ro ta t iona l  acceleration componen'c of the s ignal  
t o  predominate which provides a s ignal  t h a t  tends t o  reduce angular accelera- 
t ions  (acceleration lead) and is not nearly so  confusing f o r  a t t i t ude  control. 
The figure shows tha t  the  performance is  r e l a t ive ly  insensi t ive t o  accelerom- 
e t e r  location over a range of about 13 meters and then deter iorates  slowly. 
Since the center of rotat ion moves with t i m e  of f l i g h t ,  t he  nominal value fo r  
the  remainder of the  study w a s  chosen so  t h a t  the  accelerometer remained 
s l igh t ly  forward of the instantaneous center of rotat ion (1.0 t o  1.23 i n  
f igure 13) during the  high dynamic pressure region and i s  physically located 
a t  s ta t ion 2000 i n  figure 1. 

The abscissa represents longitudinal locat ion of t he  acceler- 

To ve r i fy  the  assumption t h a t  a "rate augmentation only" system would 
not cause large decrements i n  performance as compared with more complex aug- 
mentation, an accelerometer loop w a s  added t o  the  control system of figure 4. 
The augmentation system signal  t o  the  engine then becomes 

P = a,&* + g2j/* 

where g2 i s  the  loop gain coeff ic ient .  If the  accelerometer i s  located near 
the  instantaneous center of rotat ion,  it can be seen from the equation fo r  
y* above tha t  the  engine s ignal  becomes 

This augmentation s ignal  leads t o  t he  
and stability: 

2(% = M p a l  + Fa v 

following expressions for  system damping 

wn2 = (57i3a1 
Figure 1 4  shows bending moment 
wn2 
14 

performance and p i l o t  ra t ing as a function of 
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Since the  accelerometer loop gain coefficient has a negligible e f f ec t  on 
2 c%, and a1 was maintained a t  the nominal value of 0.73, 2cq, was essen- 
t i a l l y  constant. Increasing the s t a b i l i t y  had l i t t l e  e f f ec t  on bending molnent 
performance, but s h c e  the  p i l o t ' s  t ask  of null ing the  accelerometer is  eased, 
the p i l o t  ra t ing  improves. However, because bending moments were not reduced 
with the  increased s t a b i l i t y ,  it was felE that the added complexity of accel- 
erometer augmentation (especial ly  considering e l a s t i c  body and fuel-sloshing 
e f f ec t s )  was not j u s t i f i ed .  

Figure 15 summarizes the work on handling qua l i t i e s  and compares the 
~ present r e s u l t s  with those of reference 7. 

sented as a function of system danqing and s t a b i l i t y .  
corresponds t o  a p i l o t  ra t ing  of 3.5 or less .  The acceptable fo r  normal 
operation area corresponds t o  p i l o t  ra t ings between 3.3 and 4.5 while the 

The 
unaugmented vehicle and recommended augmentation points a re  indicated. The 
p i l o t  t ask  f o r  the f l i g h t  con t ro l l ab i l i t y  l i m i t  of reference 7, shown in 
f igure 13, was t o  maintain vehicle angle of a t tack  a t  l e s s  than 2 O  with no 
disturbances while the  p i l o t ' s  t ask  fo r  the present r e su l t s ,  as discussed 
e a r l i e r ,  was t o  minimize the r i g i d  body bending moment i n  the  presence of a 

vehicle through 5 O  t o  10' of a t t i t u d e  a t  the wind spike while minimizing the 
expression used f o r  high 
design constraints  ) 

P i l o t  opinion boundaries are  pre- 
The sa t i s fac tory  area 

I emergency operation area was f o r  p i l o t  ratings between 4.5 and 6.3. 

I severe wind disturbance. The present task  required t h a t  the p i l o t  ro t a t e  the 

q r i g i d  body bending moment (see section on vehicle 

This difference i n  p i l o t  tasks  explains the much more r e s t r i c t i v e  con- 
d i t ions  placed on a Saturn V c lass  vehicle. It should be noted t h a t  in the 
presence of a less severe wind (corresponding t o  normal operation) the  p i l o t  
ratings f o r  a given damping and s t a b i l i t y  level  would improve considerably. 

Bending F i l t e r  Selection 

In t h i s  phase of the study the f i l ters dictated by the  e l a s t i c  body 
dynamics were investigated. 
the p i l o t ' s  cont ro l le r  f i l t e r ,  and the  display f i l t e r s .  
f l i g h t  simulation included a single axis ,  two degrees of r i g i d  body freedom, 
and two flexible-body modes. 
Other charac te r i s t ics  of the simulation and the p i l o t  t ask  were ident ica l  t o  
t h a t  used f o r  the basic handling qudl i t ies  investigation described previously. 

These included the rate loop augmentation f i l ter ,  
The d iscre te  time of 

It did not include fuel-sloshing dynamics. 

Rate augmentation f i l t e r . -  The r a t e  augmentation f i l t e r  shown i n  f igure 4 
is  required t o  s t ab i l i ze  the e l a s t i c  s t ruc tura l  dynamics present in the 
closed rate loop. 
pl icated by the r e l a t ive ly  narrow separation of the  first bending mode natural  

With respect t o  the Saturn V vehicle,  t h i s  problem is  com- 
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frequency and p i l o t  control frequencies. The design procedure of t h i s  f i l t e r  
for  a manual a t t i t ude  control system is, i n  pr inciple ,  no d i f fe ren t  from t h a t  
normally used fo r  automatic control systems. The procedure involves finding 
a f i l t e r  which attenuates or s h i f t s  the  phase of the  bending content of the  
feedback signals so tha t  adequate s t a b i l i t y  margins a re  a t ta ined  but which 
does not "significantly" a l t e r  the  r i g i d  body content of the s ignals .  

With the  nominal rate gyro locat ion ( s t a t ion  2470 i n  f i g .  1) a sat isfac-  
to ry  ra te  augmentation f i l t e r  f o r  the  manual control system w a s  determined t o  
be 

336 
( s  + 6)(s + 7 ) ( s  + 8) 

Fib) = 

Any system response modes introduced by t h i s  f i l t e r  were heavily damped and 
not objectionable t o  the  p i l o t .  

Controller f i l t e r . -  The purpose of t h i s  f i l t e r  i s  t o  smooth the  output 
of the  p i lo t ' s  control ler  a t  e l a s t i c  bending frequencies. 
the augmentation f i l t e r  described previously, t h i s  reduces the magnitude of 
the s t ructural  osc i l la t ions .  This i s  important because: 

In conjunction with 

1. The r i g i d  body control task  i s  not obscured a t  the  p i l o t ' s  displays 
by e l a s t i c  osc i l la t ions .  
sensor outputs. ) 

(Another approa.ch t o  t h i s  problem would smooth the 

2 .  The component of bending moment s t r e s s  due t o  e l a s t i c  s t ruc tu ra l  
motions is  reduced. 

3. Motions a t  the p i l o t ' s  s t a t ion  caused by e l a s t i c  motions a re  reduced. 
This may be necessary i f  the motions a re  severe enough t o  complicate the  
p i l o t  I s control task .  

As seen i n  figure 4, the  phase lags  introduced by the control ler  and any 

From item (1) alone, it i s  
display f i l t e rs  w i l l  be additive.  
f i l t e r s  w i l l  a f fec t  the  control ler  f i l t e r  design. 
not clear what combination of control ler  and display f i l t e r s  should be used. 
Items (2) and (3), though, both require t h e  introduction of as much attenua- 
t i on  as i s  allowable a t  t he  control ler  f i l t e r .  
then, is t o  place the  t o t a l  allowable attenuation and resul t ing phase l ag  i n  
the controller f i l t e r .  

Therefore, the introduction of display 

The best  over-all solution, 

For the  present study, a passive second-order f i l t e r  configuration w a s  
chosen f o r  the control ler  f i l t e r .  

F ~ ( s )  = 
wn2 

52 + 2fsLdns + qp 

Piloted simulation runs were made varying the natural  frequency, %, of t h i s  
f i l t e r ,  with a fixed damping r a t i o ,  f s ,  of 0.5 t o  produce the r e su l t s  shown i n  
figure 16. 
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The upper curves of f igure 16 show pi lo t  ra t ing  and rigid-body bending 

moment performance, while t he  lower curve presents the  maximum amplitude of 
t he  s t ruc tu ra l  e l a s t i c  motions a t  the p i l o t ' s  s t a t ion  f o r  the  first and second 
modes. Lowering the na tura l  frequency of the f i l t e r  attenuates the  p i l o t ' s  
inputs which occur a t  body e l a s t i c  frequencies, but the  phase l a g  introduced 
causes the rigid-body control problem t o  become more d i f f i c u l t  with a corre- 
sponding increase in the maximum bending moment and p i l o t  rating. 
value indicated i n  f igure 16 was chosen f o r  the remainder of the study. 

The nominal 

With these f i l t e r s  and rate gyro location, f igure 16 indicates that from 
a p i lo ted  standpoint only the first bending mode is s ignif icant ,  since the  
e l a s t i c  motion amplitudes f o r  t h i s  mode a re  much la rger  than fo r  the  second 
mode. 
displays and i n  h i s  motion cues. 
only the  first mode was mechanized. It should be recal led,  however, t h a t  all 
the  s t ruc tu ra l  modes m u s t  be included i n  the study of the r a t e  augmentation 
f i l t e r  . 

Therefore, it w i l l  be the  dominant e l a s t i c  e f f ec t  seen a t  the  p i l o t ' s  
Consequently, i n  l a t e r  pi loted simulations 

N o r m a l  Mode Manual Performance (Fixed Cockpit and Centrifuge) 

The performance of t he  pi loted control system described above was 
investigated on a more r e a l i s t i c  simulation. Fuel-sloshing dynamics were 
investigated a s  well a s  the  e f f ec t s  of acceleration motion cues on the  p i l o t ' s  
control capabi l i ty .  
produce the  desired performance. 

Emphasis was placed on developing p i l o t  techniques t o  

Computer simulation.- The wind disturbance of f igure 2 was used while 
the p i tch  and y a w  channel control system was t h a t  of f igure 4 with nominal 
gain values. The r o l l  channel had a simple ra te  augmentation system with a 
time constant of 1 second and maximum r o l l  control power of 150/sec2. 
l a t i o n  f l i g h t s  commenced a t  l i f t - o f f  and the i r  duration corresponded t o  the 
time of f l i g h t  f o r  the  f i rs t  stage. 
icant  parameters. A t yp ica l  mn is shown i n  figure 17. The wind disturbance 
i n  t h i s  f igure,  %, is  the  component of angle of a t tack  due t o  the wind of 
f igure 2. 

simu- 

S t r i p  recordings were made of the  signif- 

In i t i a l  simulation r e s u l t s  were obtained without fuel-sloshing dynamics 
because the  necessary data f o r  simulation were not available.  However, as 
soon as they became available,  the  e f f ec t s  were investigated.  In s p i t e  of 
the  l o w  frequencies of o sc i l l a t ion  (about 1/2 cps),  the  addition of fuel- 
sloshing dynamics caused a negligible decrement i n  the  p i l o t ' s  a b i l i t y  t o  
control (see discussion of f i g .  20). 
of t h i s  and subsequent sections include the effects  of fuel-sloshing dynamics. 

Unless spec i f ica l ly  noted, the  results 

Centrifuge dynamic character is t ics . -  The ARC centrifuge ( f ig .  9) used in 
the  study enabled an approximate simulation of the  Saturn V, first-stage 
launch p ro f i l e  t o  be made. 
l a t e d  by ro ta t ion  of the arm, the  three ginibal cab being rotated t o  a l ine  i t s  
longi tudinal  axis with the resu l tan t  g vector. The normal accelerations 
f e l t  by the  p i l o t  during launch caused by r igid body ro t a t ion  and e l a s t i c  

The thrust acceleration (eye b a l l s  i n )  was simu- 



body motion were simulated by ro ta t ing  t h e  cab s l i g h t l y  so  there  was  a smal l  
component of the resul tant  g normal t o  the  cab longitudinal axis .  This 
necessitated making undesired angular accelerations t o  simulate the l i n e a r  
accelerations. The magnitude of these undesired angular motions a t  times 
approached 2 radians/sec2 and were quite apparent t o  the  p i l o t  although h i s  
performance did not suffer  noticeably. The frequency response of the cab 
gimbals w a s  such tha t  l e s s  than 200 of phase l a g  existed a t  the  f irst  e l a s t i c  
s t ruc tura l  mode frequency. 

The launch vibration prof i le  and any longitudinal osc i l la t ions  were not 
simulated d i r ec t ly  but a high l eve l  of vibrat ion w a s  natural ly  present i n  the 
centrifuge. 
a t  frequencies under 20 cps. 

Root mean square values of vibration reached as high as 0.3 g 

I n  summary, it is  f e l t  t ha t  t he  centrifuge provided a conservative 
simulation of the  launch p ro f i l e .  Since the  da ta  t o  be presented show l i t t l e  
decrement i n  performance between the  fixed base and centrifuge r e su l t s ,  it i s  
concluded t h a t  t he  motion cues present i n  the  Saturn V, S - I C  launch prof i le  
are  not s ignif icant  fo r  p i l o t  cont ro l lab i l i ty  considerat ions. 

P i lo t  tasks.-  Four p i l o t  tasks  were evaluated t o  determine how they 
affected system performance. The important aspects of each are  discussed 
below. 

1. Atti tude s tabi l izat ion:  The objective of t h i s  task  was  t o  control 
the vehicles a t t i t ude  t o  tha t  cal led f o r  i n  the open loop guidance program. 
No attempt w a s  made t o  reduce loads and the p i lo t  used a t t i t ude  e r ror  as the 
primary control parameter. Atti tude r a t e  and time were a l so  presented. 

After l i f t - o f f  the p i l o t  attempted t o  zero the pi tch and yaw a t t i t ude  
errors  while maintaining the correct roll angle. 
called fo r  a 400 roll commencing a t  5 seconds a f t e r  l i f t - o f f  and terminating 
15 seconds after l i f t - o f f  a t  the correct downrange heading. The nominal p i tch  
program then t i l t e d  the vehicle in to  the  correct boost plane with the  p i l o t  
maintaining zero roll angle thereaf te r .  During the  wind disturbance time of 
f l i gh t  (60 through 90 see) ,  the p i l o t  must overcome the  aerodynamic uprighting 
torque while maintaining the  nominal a t t i t ude  program. About 5 seconds 
pr ior  t o  staging, the  p i l o t  l e t  the r a t e  augmentation system n u l l  a t t i t ude  
ra tes  i n  preparation f o r  staging. 

The roll angle program 

2 .  Load reduction: The objective of  t h i s  t a sk  w a s  t o  minimize the  body 
bending moment with secondary emphasis being placed on a t t i t ude  control.  A s  
discussed i n  the section on vehicle constraints ,  the vehicle s t ruc tura l  load 
or bending moment i s  a combination of aerodynamic loads and engine induced 
loads. Since the  aerodynamic loads are only s ignif icant  i n  the  high dynamic 
pressure region, the  recomended p i lo t ing  procedure u t i l i zed  the  signals from 
the  body-mounted accelerometers as the  primary display parameters during t h i s  
period. The p i l o t  w a s  a l s o  presented a t t i t ude  error ,  a t t i t ude  rate, and t i m e .  

From l i f t - o f f  t o  60 seconds the  p i lo t ing  technique w a s  s i m i l a r  t o  t h a t  
for  the a t t i t ude  s tab i l iza t ion  task,  the  p i l o t  s tab i l iz ing  the pi tch and yaw 
a t t i tude  e r ro r  signals.  
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. 
A t  60 t o  90 seconds h i s  primary emphasis was on nulling the accelerometer 

signals while maintaining zero r o l l  angle. 
extreme winds could be expected. 
returned t o  the  a t t i t u d e  e r ro r  s ignals  while lnaintaining the accelerometer 
s igna ls  a t  a safe l eve l .  
t h a t  i n  the  a t t i t u d e  s t ab i l i za t ion  task.  
minimized the  engine induced loads by making smooth, smal l  control ler  inputs. 

This w a s  the  period during which 
From 90 t o  lo3 seconds, he gradually 

After 103 seconds, h i s  procedure w a s  ident ica l  t o  
Throughout the  f l i g h t  the p i l o t  

3. Trimmer: The objective of t h i s  task  was t o  minimize the body bending 
moment with the p i l o t  t r i m i n g  a rudimntary automatic guidance system. 
automatic system used was the  augmentation system of f igure 4 with an a t t i t u d e  
loop added. 
automatic system. 
the  primary display parameter during the high dynamic pressure time of f l i gh t .  
In addition, a t t i t u d e  e r ror ,  a t t i t ude  r a t e ,  and time were displayed t o  the 
p i l o t .  

The 

The p i l o t ' s  control ler  signal was then sumrned with t h a t  of the  
The p i l o t  used the body mounted accelerometer s ignals  as 

From l i f t - o f f  t o  60 seconds the  p i l o t  made minor corrections t o  the 
automatic system; the a t t i t u d e  augmentation loop s tab i l ized  a t t i t ude .  A t  
60 t o  9 seconds (time f o r  wind disturbance) the  p i l o t  acted as  an accelerom- 
e t e r  loop, attempting t o  n u l l  the  accelerometer signals.  From 90 t o  lo5 sec- 
onds, he gradually l e t  the automatic system regain control.  From103 seconds 
t o  staging, he again made minor a t t i t ude  corrections a s  necessary t o  a s s i s t  
the  automatic system. 

4. No rate augmentation: The objective of t h i s  task  was t o  evaluate the 
p i l o t ' s  a b i l i t y  t o  control the vehicle without augmentation. From figure 15 
it i s  seen t h a t  t h i s  is  poten t ia l ly  o n l y  an emergency mode of operation. In 
addition, since the r e su l t s  of f igure 15 were f o r  a highly idealized sbula- 
t i on ,  it was only prac t ica l ly  possible t o  control the vehicle i n  one axis 
without augmentation. The p i l o t  was displayed a t t i t u d e  e r ror ,  a t t i t ude  rate, 
time, and body-mounted accelerometer signals.  

The p i l o t  attempted t o  s t ab i l i ze  rate and a t t i t u d e  as well as reduce 
loads i n  the y a w  axis while an automatic system controlled the pi tch and roll 
axes. 

Results and discussion.- Figures 18, 19, and 20 present the primary 
performance c r i t e r i a  f o r  the  four p i l o t  tasks j u s t  discussed. Figure 21 shows 
the  magnitude of the fuel-sloshing-mass accelerations while figure 22 presents 
the  r e s u l t s  of an investigation of the p i l o t  motion cues due t o  e l a s t i c  body 
mot ions. 

As  shown i n  f igure 18, the p i l o t s  ra ted the a t t i t u d e  s t ab i l i za t ion  and 
trimming tasks  acceptable for  normal operation (P.R. < 4.5). With the excep- 
t i on  of one p i l o t ,  all ra ted the load reduction task  as acceptable while 
generally they rated the no augmentation t a s k  acceptable f o r  emergency opera- 
t i o n  only. The agreement between fixed base and centrifuge r e s u l t s  is  good. 

The s t ruc tu ra l  load during the t ra jectory was well below the design l i m i t  
f o r  the  load-reduction and trimmer task  as shown i n  f igure 19. The maximum 



. '  
s t ruc tura l  loading with the  severe wind of f igure 2 s l i g h t l y  exceeded the  
design strength values fo r  the a t t i t u d e  s t ab i l i za t ion  and no augmentation 
p i l o t  tasks. 
i s  similar t o  tha t  obtained with a typ ica l  automatic system with only rate and 
a t t i tude  loops. The centrifuge r e su l t s ,  i n  general, appeared t o  be s l i g h t l y  
higher than the  fixed base data .  It i s  f e l t  t ha t  t h i s  w a s  due t o  the  f a i r l y  
severe vibration environment of the centrifuge making it impossible t o  resolve 
the  readings of the display as accurately as the fixed base display. 

The value of bending moment f o r  the  a t t i t ude  s tab i l iza t ion  task  

As discussed i n  the  design constraints  sect ion,  the data  fo r  calculating 
the  contribution t o  the s t ruc tura l  bending moment load of f igure 1 9 ,  due t o  
f u e l  sloshing,were not available.  
erations i s  therefore presented, for  reference, i n  f igure 21 as the  maximum 
acceleration in  pi tch or y a w  of e i t h e r  the f u e l  or l i qu id  oxygen tank pro- 
pellants during the t ra jec tory .  With the  l o w  values of accelerations indi-  
cated and the  mass r a t i o s  involved, preliminary data indicate the  contribution 
t o  s t ruc tura l  loading w i l l  be small (sloshing contribution t o  bending moment 
l e s s  than 10 percent of design value).  

The magnitude o f  these sloshing mass accel- 

It has already been noted tha t  the  l eve l  of sloshing mass accelerations 
w a s  l o w  enough t h a t  t h e i r  e f fec t  on the p i l o t ' s  control task  w a s  negl igible .  
Although a complete investigation of the  sloshing problem was not made, it 
w a s  f e l t  t h a t  t he  locat ion of the tanks close t o  the  vehicle 's  c.g. pre- 
vented more serious problems from ar i s ing .  

The maximum magnitudes of the  e l a s t i c  body motion cues fo r  e i t h e r  pi tch 
or  yaw a t  the  p i l o t ' s  s ta t ion  are shown i n  f igure 19. The p i l o t  f ee l s  them 
as l a t e r a l  or normal accelerations superimposed on the  longitudinal t h rus t  
acceleration. The magnitudes are  w e l l  below 0 .1  g and had no apparent e f fec t  
on control. To investigate the problem fur ther ,  the motion cue, due t o  the 
e l a s t i c  motions, w a s  a r b i t r a r i l y  increased by a constant factor  t o  attempt t o  
detect a threshold l eve l .  Because of the  centrifuge l imitat ions,  as discussed 
previously, t h i s  l eve l  could only be increased by a factor  of 2.  This sub- 
jected the p i l o t  t o  l a t e r a l  and normal accelerations with a maximum value of 
about 0.2 g .  
values remained unchanged. 

Figure 22 shows tha t  the  p i l o t  ra t ings  and s t ruc tu ra l  load 
The p i l o t  w a s  performing the load reduction task.  

Trajectory dispersions ranged as high as 3000 meters and 30 m/sec i n  
the  a t t i tude  s tab i l iza t ion  task  t o  as high as  8000 meters and 100 m/sec i n  
the  load reduction control task.  

Other t ra jec tory  parameters of  i n t e re s t  may be seen i n  f igure 17 which 
is  the s t r i p  recording of a t ra jec tory  u t i l i z ing  the  "load reduction" tech- 
nique. The p i lo t  w a s  controll ing a l l  three axes but for  convenience only the  
pitch channel i s  shown. One parameter of par t icu lar  in te res t  is  the engine 
gimbal angle. Its l o w  magnitude (< lo) indicates t h a t  the  th rus t  vectoring 
velocity penalty w i l l  be negligible.  

The results of f igures  18 through 22 indicate tha t  a pi loted control 
system can be highly f lex ib le .  
load or a t t i t ude  e r rors  as the  s i tua t ion  requires.  The r e su l t s  a l so  show 

The p i l o t  may choose t o  minimize s t ruc tura l  
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t h a t  i n  an emergency, single-axis control is  possible without augmentation. 
With the severe wind disturbance used ( f i g .  2 ) ,  three axis control without 
augmentation is questionable. 

Failure Mode Performance 

The e f f ec t  of the following failure modes was investigated. 

1. One engine OL& 

2. Two engines out 

3. One engine hard over 

4. Rate a w n t a t i o n  out 

5 .  Attitude e r ror  display f a i l u r e  

6. Rate augmentation f a i lu re  during trimner mode 

Since the  four outer engines of the S-IC stage all swivel f o r  pitch,  p w ,  
or roll control,  the  l o s s  of one or more engines severely r e s t r i c t s  the  capa- 
b i l i t y  t o  control the  vehicle.  
example sketch where the  p i l o t  has cal led for a p i tch  maneuver but  due t o  the  
loss  of one engine is a l so  experiencing a roll maneuver. 

This can be seen readi ly  in the following 

l ~ a w  axis 

Of 

To counteract t h i s  unwanted r o l l  torque, the p i l o t  must make a coordina- 
ted  roll input with the desired p i tch  input t o  obtain a pure p i tch  maneuver. 
It was found desirable  t o  increase the p i l o t ' s  roll control power t o  optimize 
t h i s  task.  
s t ruc tu ra l  load with maximum r o l l  control power f o r  the  three engine f a i l u r e  
modes investigated.  

Figures 23 and 24 present the  variation of p i l o t  ra t ing  and 

For these f igures  the  engine or engines were made t o  fa i l  
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a t  l i f t -o f f  and the  complete t ra jec tory  w a s  flown i n  t h a t  mode. The change 
i n  t ra jectory performance i n  the degree of freedom along the  t ra jec tory  w a s  
not simulated. 

Based on these considerations, 730/sec2 w a s  chosen as the new nominal 
value for roll control power as it allowed the  p i l o t  t o  control i n  the  failure 
mode without affect ing normal performance. Roll  channel time constant w a s  
maintained a t  1 second. 

Figure 25 presents the  results of random time f a i lu re s  for  the  six 
f a i lu re  modes. A s  mentioned above the change i n  t ra jec tory  performance along 
the  t ra jectory was not simulated, the  primary emphasis being placed on the 
other five degrees of freedom which const i tute  the  control problem. Three 
p i l o t s  participated i n  the study, f lying a t  l e a s t  nine t r a j ec to r i e s  fo r  each 
f a i lu re  mode. A description of the  f a i lu re  modes and p i l o t  techniques, where 
necessary, i s  given below. 

1. One engine out: engine thrus t  f a i lu re  i n  one of the outer four 
engines . 

2.  Two engines out: engine thrus t  failure i n  t w o  of the outer four 
engines on the same s ide.  

3. One engine hard over: pi tch o r  y a w  hydraulic actuator on one engine 
fa i ls ,  causing engine t o  swivel t o  f u l l  deflection (50) i n  pi tch o r  yaw. 

4. Rate augmentation out: r a t e  augmentation f a i lu re  i n  one ax is  of the 
nominal control system (no a t t i t ude  o r  accelerometer loop) .  
remainder of the t ra jec tory  with three axis  control but with augmentation out 
i n  only one axis .  

P i lo t  f l e w  

5 .  Attitude e r ror  display failure: The pi tch and yaw a t t i t ude  e r rors  
displayed on the f l i gh t  d i rec tor  needles f a i l ed .  The p i l o t  u t i l i zed  a nominal 
p i tch  a t t i tude  program placed on a scale around the p i l o t ' s  clock as shown 
below. By reading the  correct value of p i tch  a t t i t ude  as a function of time 
and comparing with the ac tua l  value on the a l l - a t t i t ude  indicator,  the  p i l o t  
could obtain the pi tch a t t i t ude  e r ror .  Since the y a w  a t t i t ude  should be 
constant during f i r s t - s tage  boost, the  p i l o t  controls yaw and r o l l  a t t i t ude  
a t  the desired values d i r ec t ly  from the a l l - a t t i t ude  indicator.  

6 .  Rate augmentation f a i lu re  during t r i m e r  
mode: r a t e  augmentation f a i l ed  i n  one ax is  i n  the 
t r i m e r  mode (see section on normal performance). 

Because of simulation l imitat ions,  the p i l o t  
k n e w  what the  fa i lure  mode would be (not necessar- 
i l y  which axis ,  e t c  .) , but the  time of f a i lu re  w a s  
random. The three c o l m s  of figure 25 correspond 
t o  the general time of occurrence of the fa i lure :  
the f i rs t  column being fo r  nonaerodynamic f l i g h t  
(0 < t < 60) p r io r  t o  high q, the second column 
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. 
f o r  high 
f l i g h t  after high 
t ra jec tory .  The c i r c l e s  represent sat isfactory t r a j ec to r i e s  while the crosses 
indicate  t h a t  one of the  three c r i t e r i a  indicated a t  the  bottom of t h e  f igure 
was exceeded e i the r  at  the  time of f a i lu re  or during the remainder of the 
f l i g h t .  

q f l i g h t  (60 < t < lO?),and the t h i r d  column fo r  nonaerodynamic 
Each c i r c l e  or cross represents one q (103 < t < 1.50). 

I n  general, a l l  the  f a i lu re  modes were controllable i n  the  nonaerodynamic 
f l i g h t  areas. The performance c r i t e r i a  violations f o r  0 < t < 60 generally 
occurred during subsequent f l i g h t  in the high q area.  One engine out, two 
engines out, and a t t i t u d e  e r ro r  f a i l u r e  gave l i t t l e  trouble.  
case (severe unbalancing torque of the engine) and the  r a t e  augmentation 
cases were more marginal with the severe wind disturbance used ( f ig .  2 ) .  
augmentation out in the trimmer mode was par t icu lar ly  c r i t i c a l .  The lag 
bui l t  in to  the p i l o t ' s  control ler  with the control ler  f i l t e r ,  i n  conjunction 
with the  neut ra l ly  s table  system, combined t o  form an undesirable condition 
where the p i l o t  tended t o  azql i fy  the osc i l la t ions .  

The hard over 

Rate 

In general, though, even with the wind used ( f ig .  2) the p i l o t  was quite 
capable of controll ing in the emergency modes investigated. 
it was apparent t h a t  the p i l o t  should be able t o  provide adequate time t o  
decide on a l te rna te  modes of act ion such as continuing with degraded accuracy 
o r  i n i t i a t i n g  a controlled abort .  

In most cases, 

Vehicle P a r m t e r  Variation Study 

While it was beyond the scope of the  study t o  analyze in  d e t a i l  the 
e f f ec t s  of parameter var ia t ions,  it was fel t  necessary t o  examine the sensi- 
t i v i t y  of system performance (control only) t o  what was f e l t  were the most 
important (and carried the least l e v e l  of confidence) parameters. 

Variations were made in: (1) damping of the  fuel-sloshing masses, (2) 

The variat ions were made t o  the  nominal system as described 
frequency of the  first s t ruc tura l  e l a s t i c  mode, and (3) aerodynamic s t a t i c  
s t a b i l i t y ,  %. 
i n  the  preceding two sections and the results a re  shown i n  f igures  26 through 
28. 

Figure 26 indicates a small change in the performance c r i t e r i a  shown 
with the  changes in fuel-sloshing damping r a t io  considered. The r a t e  augmen- 
t a t ion  system adds damping t o  t h i s  mode of closed-loop system response and 
the sma l l  changes in open-loop damping have l i t t l e  e f f ec t  on system response. 

Because the frequency of the  first e l a s t i c  s t ruc tu ra l  mode is  close t o  
p i l o t  control frequencies, it was f e l t  performance might de te r iora te  rapidly 
with s l i g h t l y  lower than nominal values. -om f igure 27 it i s  seen tha t  even 
fo r  extreme var ia t ions,  +20 percent, the performnce decrement i s  not serious. 

Since the nominal control system recommended r e l i ed  only on rate augmen- 
t a t ion ,  the  var ia t ion of performance with aerodynamic s t a t i c  s t a b i l i t y ,  M a ,  
was considered of i n t e re s t  as t h i s  is  the major contribution t o  the closed 



loop r ig id  body frequency. 
q but the r a t i o  of t o  nominal was held constant throughout the 
t ra jectory.  
i s  not severe. 

The abscissa of figure 28 is presented for  high 

For var ia t ions as high as S O 0  percent t he  change i n  performance 

From the  l imited investigation made, it appears t h a t  a manual control 
system i s  re la t ive ly  insensi t ive t o  system parameter var ia t ions.  

CONCLUSIONS 

A study of the f e a s i b i l i t y  of manned par t ic ipat ion i n  the  control of the 
f i r s t  stage of  the Saturn V vehicle w a s  conducted. It w a s  concluded that :  

1. Pi lo t  par t ic ipat ion i n  the  control system provides a high degree of 
f l e x i b i l i t y  and may contribute t o  the successful completion of the control 
tasks  during the  first stage of f l i g h t .  

2 .  The r a t e  augmentation f i l t e r  may pose s ignif icant  design problems 
because it can add l i g h t l y  damped system response modes a t  p i l o t  control 
frequencies. 

3. Single-axis control can be completed without the a i d  of r a t e  augmen- 
t a t ion .  For the severe wind disturbance considered three-axis control with 
no r a t e  augmentation may not be possible.  

4. Structural  e l a s t i c  bending motions sensed a t  the  p i l o t ' s  s t a t ion  are 
low enough i n  amplitude tha t  they should not present s ignif icant  motion cue 
problems. 

3 .  Fuel-sloshing dynamics do not s ign i f icant ly  a l ter  the  pi loted control 
problem. 

6.  A var ie ty  of  f a i lu re  modes do not preclude sa t i s fac tory  control.  

7. The pi loted control system appears t o  be r e l a t ive ly  insensi t ive t o  
expected var ia t ions i n  system parameters. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, C a l i f . ,  Jan. 13, 1963 
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TABLE I .- VEHICLE CHARACTERISTICS 

0 
(lift-off) 

0 

17 
.21 

0 

.84 

52.6 

1180 

0 

0 

-40 

0 

0 

0 

.054 

.00017 

16.4 

2.15 

.005 

075 

.00023 

-3 99 

2.15 

.005 

ime of flight 
77 

(maximum q) 

0.130 

30 

36 

.141 

1.15 

52.6 

1270 

486 

3650 

0 

0 

37 -0 

69 
.082 

.00018 

22.9 

2.65 

.005 

.121 

.00027 

6 -7 

2.70 

.005 

150 
(burnout ) 
0.006 

70 

87 

- .016 

3 *3 

52.6 

-840 

!300 

100 

0 

0 

65 *5 

15 

9 035 

.000066 

39 *8 

3 -55 

.005 

.070 

,00013 

24.9 

3 972 

.005 

Units 
~~ ~ 

Seconds 

meters/sec2/deg 

meters/secZ/deg 

meters/sec2/deg 

l/sec2 

l/sec2 

l/sec2 

inches 

m/sec 

b/m2 

deg 

deg/sec 

deg 

deg/sec 

1/m2 

meters 

radians / se c 

l/+ 

meters 

radians/se c 
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I .  

U.40 

.005 

.418 

.00074 

-2.98 

4.59 

TABLE I.- VEBICLE CHARACTERISTICS - Concluded 

12.30 

.005 

,418 

.00074 

.86 

5 *e7 

Time of f l i gh t  
0 

( l i f t -o f f )  

6 -77 

.005 

.46 

.00077 

6.94 

3.04 

7.33 

0005 

.46 

.00077 

8.60 

2 .%7 

see figure 10 

150 
(burnout ) 
8.25 

-005 

.46 

.00077 

4.47 

-57 

1 3  -25 

.005 

.418 

.00074 

2.41 

3.43 
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Figure 1.- Saturn V vehicle configuration. 
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Figure 10 .- Bending mode shapes. 
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I. Flexible body, single axis, no sloshing 
2. Fixed point, high q 
3. Minimum load control task 
4. Three axis controller 

5. Nominal damping and control power 
6. Augmentation filter in 
7. No display filter 
8. Second -order controller filter with cC=0.5 

\\ 

Nomi no I 
value 

First mode 

Second mode 

I I I 
.I .2 . 3  .4 .5 .6 .7 .8 

Natural frequency, cps 

Figure 16.- Controller f i l t e r .  
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Figure 17.- Typical run (only pitch recorded). 
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Figure 21 .- Sloshing dynamics. 
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Figure 26 .- Fuel sloshing damping r a t io .  
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Figure 27.- Fi r s t  e l a s t i c  mode frequency. 
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